486 research outputs found

    SLIVer: Simulation-Based Logic Bomb Identification/Verification for Unmanned Aerial Vehicles

    Get PDF
    This research introduces SLIVer, a Simulation-based Logic Bomb Identification/Verification methodology, for finding logic bombs hidden within Unmanned Aerial Vehicle (UAV) autopilot code without having access to the device source code. Effectiveness is demonstrated by executing a series of test missions within a high-fidelity software-in-the-loop (SITL) simulator. In the event that a logic bomb is not detected, this methodology defines safe operating areas for UAVs to ensure to a high degree of confidence the UAV operates normally on the defined flight plan. SLIVer uses preplanned flight paths as the baseline input space, greatly reducing the input space that must be searched to have confidence that the UAV will not encounter a logic bomb trigger condition during its mission. This research discusses the process for creating a logic bomb in the ArduPilot autopilot software, creating test flight profiles, UAV log file parsing, and the analysis of the methodology. SLIVer can accommodate multiple flight profiles and parses through the corresponding log files to create a safety corridor through which the UAV is able to safely traverse through with a desired level of confidence. By utilizing SLIVer, UAV operators and planners alike are afforded increased confidence that the aircraft will operate normally throughout the duration of a mission. The proof of concept implementation shows that the input space required to validate a UAV mission is reduced by approximately 60%, a far better result than brute force input testing. As UAVs are continually called upon to fill critical civilian and military roles, it is essential that planners and users of these devices have a methodology in place to assure that logic bombs are absent from the device

    Robotic control of the seven-degree-of-freedom NASA laboratory telerobotic manipulator

    Get PDF
    A computationally efficient robotic control scheme for the NASA Laboratory Telerobotic Manipulator (LTM) is presented. This scheme utilizes the redundancy of the seven-degree-of-freedom LTM to avoid joint limits and singularities. An analysis to determine singular configurations is presented. Performance criteria are determined based on the joint limits and singularity analysis. The control scheme is developed in the framework of resolved rate control using the gradient projection method, and it does not require the generalized inverse of the Jacobian. An efficient formulation for determining the joint velocities of the LTM is obtained. This control scheme is well suited for real-time implementation, which is essential if the end-effector trajectory is continuously modified based on sensory feedback. Implementation of this scheme on a Motorola 68020 VME bus-based controller of the LTM is in progress. Simulation results demonstrating the redundancy utilization in the robotic mode are presented

    High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse

    Get PDF
    Obesity induced by high fat (HF) diet is associated with inflammation which contributes to development of insulin resistance. Most prior studies have focused on adipose tissue as the source of obesity-associated inflammation. Increasing evidence links intestinal bacteria to development of diet-induced obesity (DIO). This study tested the hypothesis that HF western diet and gut bacteria interact to promote intestinal inflammation, which contributes to the progression of obesity and insulin resistance.Conventionally raised specific-pathogen free (CONV) and germ-free (GF) mice were given HF or low fat (LF) diet for 2-16 weeks. Body weight and adiposity were measured. Intestinal inflammation was assessed by evaluation of TNF-alpha mRNA and activation of a NF-kappaB(EGFP) reporter gene. In CONV but not GF mice, HF diet induced increases in body weight and adiposity. HF diet induced ileal TNF-alpha mRNA in CONV but not GF mice and this increase preceded obesity and strongly and significantly correlated with diet induced weight gain, adiposity, plasma insulin and glucose. In CONV mice HF diet also resulted in activation of NF-kappaB(EGFP) in epithelial cells, immune cells and endothelial cells of small intestine. Further experiments demonstrated that fecal slurries from CONV mice fed HF diet are sufficient to activate NF-kappaB(EGFP) in GF NF-kappaB(EGFP) mice.Bacteria and HF diet interact to promote proinflammatory changes in the small intestine, which precede weight gain and obesity and show strong and significant associations with progression of obesity and development of insulin resistance. To our knowledge, this is the first evidence that intestinal inflammation is an early consequence of HF diet which may contribute to obesity and associated insulin resistance. Interventions which limit intestinal inflammation induced by HF diet and bacteria may protect against obesity and insulin resistance

    Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals

    Get PDF
    Approximately 75% of the global human population are lactose malabsorbers. In a previous clinical trial, it was shown that feeding a high-purity galactooligosaccharide (>95% GOS) could improve symptoms of lactose-intolerant subjects, attaining lactose tolerance in a majority of subjects. To investigate the mechanism, we examined the microbiome of human subjects before and after GOS feeding. The results show a significant shift in the microbiome of responsive individuals, including lactose-fermenting microbes in their stools. The high-purity prebiotic GOS resulted in adaptive shifts in the microbiome and correlated with improvement in clinical symptoms

    Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters

    Full text link
    [EN] Phytoplankton blooms are sporadic events in time and are isolated in space. This complex phenomenon is produced by a variety of both natural and anthropogenic causes. Early detection of this phenomenon, as well as the classification of a water body under conditions of bloom or non-bloom, remains an unresolved problem. This research proposes the use of Inherent Optical Properties (IOPs) in optically complex waters to detect the bloom or non-bloom state of the phytoplankton community. An IOP index is calculated from the absorption coefficients of the colored dissolved organic matter (CDOM), the phytoplankton (phy) and the detritus (d), using the wavelength (lambda) 443 nm. The effectiveness of this index is tested in five bloom events in different places and with different characteristics from Mexican seas: 1. Dzilam (Caribbean Sea, Atlantic Ocean), a diatom bloom (Rhizosolenia hebetata); 2. Holbox (Caribbean Sea, Atlantic Ocean), a mixed bloom of dinoflagellates (Scrippsiella sp.) and diatoms (Chaetoceros sp.); 3. Campeche Bay in the Gulf of Mexico (Atlantic Ocean), a bloom of dinoflagellates (Karenia brevis); 4. Upper Gulf of California (UGC) (Pacific Ocean), a diatom bloom (Coscinodiscus and Pseudo-nitzschia) and 5. Todos Santos Bay, Ensenada (Pacific Ocean), a dinoflagellate bloom (Lingulodinium polyedrum). The diversity of sites show that the IOP index is a suitable method to determine the phytoplankton bloom conditions.CONACYT supported this research with a doctorate scholarship to Jesús A. Aguilar-Maldonado, with the announcement number 251025 in 2015. María-Teresa Sebastiá-Frasquet was a beneficiary of the BEST/2017/217 grant, supported by the Valencian Conselleria d Educació, Investigació, Cultura i Esport (Spain) during her stay at the Universidad Autónoma de Baja California (Mexico). Thanks are extended to the Strategic Action Program of the Gulf of Mexico Large Marine Ecosystem (GoM-LME), of the United Nations Industrial Development Organization (UNIDO).Aguilar-Maldonado, J.; Santamaría-Del-Ángel, E.; González-Silvera, A.; Cervantes-Rosas, OD.; López-Acuña, LM.; Gutiérrez-Magness, A.; Cerdeira, S.... (2018). Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters. Water. 10(2). https://doi.org/10.3390/w10020129S102Gower, J., King, S., Borstad, G., & Brown, L. (2005). Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 26(9), 2005-2012. doi:10.1080/01431160500075857Carstensen, J., & Conley, D. J. (2004). Frequency, composition, and causes of summer phytoplankton blooms in a shallow coastal ecosystem, the Kattegat. Limnology and Oceanography, 49(1), 191-201. doi:10.4319/lo.2004.49.1.0191Legendre, L. (1990). The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. Journal of Plankton Research, 12(4), 681-699. doi:10.1093/plankt/12.4.681Ji, R., Edwards, M., Mackas, D. L., Runge, J. A., & Thomas, A. C. (2010). Marine plankton phenology and life history in a changing climate: current research and future directions. Journal of Plankton Research, 32(10), 1355-1368. doi:10.1093/plankt/fbq062Richardson, K. (1997). Harmful or Exceptional Phytoplankton Blooms in the Marine Ecosystem. Advances in Marine Biology Volume 31, 301-385. doi:10.1016/s0065-2881(08)60225-4Smayda, T. J. (1997). What is a bloom? A commentary. Limnology and Oceanography, 42(5part2), 1132-1136. doi:10.4319/lo.1997.42.5_part_2.1132Brody, S. R., Lozier, M. S., & Dunne, J. P. (2013). A comparison of methods to determine phytoplankton bloom initiation. Journal of Geophysical Research: Oceans, 118(5), 2345-2357. doi:10.1002/jgrc.20167Platt, T., Fuentes-Yaco, C., & Frank, K. T. (2003). Spring algal bloom and larval fish survival. Nature, 423(6938), 398-399. doi:10.1038/423398bSchneider, B., Kaitala, S., & Maunula, P. (2006). Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements on a cargo ship. Journal of Marine Systems, 59(3-4), 238-248. doi:10.1016/j.jmarsys.2005.11.003Gittings, J. A., Raitsos, D. E., Racault, M.-F., Brewin, R. J. W., Pradhan, Y., Sathyendranath, S., & Platt, T. (2017). Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sensing of Environment, 189, 56-66. doi:10.1016/j.rse.2016.10.043Huppert, A., Blasius, B., & Stone, L. (2002). A Model of Phytoplankton Blooms. The American Naturalist, 159(2), 156-171. doi:10.1086/324789Fleming, V., & Kaitala, S. (2006). Phytoplankton Spring Bloom Intensity Index for the Baltic Sea Estimated for the years 1992 to 2004. Hydrobiologia, 554(1), 57-65. doi:10.1007/s10750-005-1006-7Carstensen, J., Henriksen, P., & Heiskanen, A.-S. (2007). Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication. Limnology and Oceanography, 52(1), 370-384. doi:10.4319/lo.2007.52.1.0370Cetinić, I., Perry, M. J., D’Asaro, E., Briggs, N., Poulton, N., Sieracki, M. E., & Lee, C. M. (2015). A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment. Biogeosciences, 12(7), 2179-2194. doi:10.5194/bg-12-2179-2015Alikas, K., Kangro, K., & Reinart, A. (2010). Detecting cyanobacterial blooms in large North European lakes using the Maximum Chlorophyll Index. OCEANOLOGIA, 52(2), 237-257. doi:10.5697/oc.52-2.237Platt, T., Sathyendranath, S., White, G. N., Fuentes-Yaco, C., Zhai, L., Devred, E., & Tang, C. (2009). Diagnostic Properties of Phytoplankton Time Series from Remote Sensing. Estuaries and Coasts, 33(2), 428-439. doi:10.1007/s12237-009-9161-0Cui, T., Cao, W., Zhang, J., Hao, Y., Yu, Y., Zu, T., & Wang, D. (2013). Diurnal variability of ocean optical properties during a coastal algal bloom: implications for ocean colour remote sensing. International Journal of Remote Sensing, 34(23), 8301-8318. doi:10.1080/01431161.2013.833356Loisel, H., Vantrepotte, V., Norkvist, K., Mériaux, X., Kheireddine, M., Ras, J., … Moutin, T. (2011). Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea. Biogeosciences, 8(11), 3295-3317. doi:10.5194/bg-8-3295-2011Mercado, J. M., Ramírez, T., Cortés, D., Sebastián, M., Reul, A., & Bautista, B. (2006). Diurnal changes in the bio-optical properties of the phytoplankton in the Alborán Sea (Mediterranean Sea). Estuarine, Coastal and Shelf Science, 69(3-4), 459-470. doi:10.1016/j.ecss.2006.05.019Hernández-Terrones, L., Rebolledo-Vieyra, M., Merino-Ibarra, M., Soto, M., Le-Cossec, A., & Monroy-Ríos, E. (2010). Groundwater Pollution in a Karstic Region (NE Yucatan): Baseline Nutrient Content and Flux to Coastal Ecosystems. Water, Air, & Soil Pollution, 218(1-4), 517-528. doi:10.1007/s11270-010-0664-xMoore, Y. H., Stoessell, R. K., & Easley, D. H. (1992). Fresh-Water/Sea-Water Relationship Within a Ground-Water Flow System, Northeastern Coast of the Yucatan Peninsula. Ground Water, 30(3), 343-350. doi:10.1111/j.1745-6584.1992.tb02002.xBeddows, P. A., Smart, P. L., Whitaker, F. F., & Smith, S. L. (2007). Decoupled fresh–saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology, 346(1-2), 18-32. doi:10.1016/j.jhydrol.2007.08.013Hernández-Terrones, L. M., Null, K. A., Ortega-Camacho, D., & Paytan, A. (2015). Water quality assessment in the Mexican Caribbean: Impacts on the coastal ecosystem. Continental Shelf Research, 102, 62-72. doi:10.1016/j.csr.2015.04.015Merrell, W. J., & Morrison, J. M. (1981). On the circulation of the western Gulf of Mexico with observations from April 1978. Journal of Geophysical Research, 86(C5), 4181. doi:10.1029/jc086ic05p04181Carriquiry, J. D., & Sánchez, A. (1999). Sedimentation in the Colorado River delta and Upper Gulf of California after nearly a century of discharge loss. Marine Geology, 158(1-4), 125-145. doi:10.1016/s0025-3227(98)00189-3Brusca, R. C., Álvarez-Borrego, S., Hastings, P. A., & Findley, L. T. (2017). Colorado River flow and biological productivity in the Northern Gulf of California, Mexico. Earth-Science Reviews, 164, 1-30. doi:10.1016/j.earscirev.2016.10.012Daesslé, L. W., Orozco, A., Struck, U., Camacho-Ibar, V. F., van Geldern, R., Santamaría-del-Angel, E., & Barth, J. A. C. (2017). Sources and sinks of nutrients and organic carbon during the 2014 pulse flow of the Colorado River into Mexico. Ecological Engineering, 106, 799-808. doi:10.1016/j.ecoleng.2016.02.018Orozco-Durán, A., Daesslé, L. W., Camacho-Ibar, V. F., Ortiz-Campos, E., & Barth, J. A. C. (2015). Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): Interactions between the lower Colorado River and adjacent ground- and surface water systems. Science of The Total Environment, 512-513, 185-193. doi:10.1016/j.scitotenv.2015.01.016Aguilar-Maldonado, J. A., Santamaría-del-Ángel, E., & Sebastiá-Frasquet, M. T. (2017). Reflectances of SPOT multispectral images associated with the turbidity of the Upper Gulf of California. Revista de Teledetección, (50), 1. doi:10.4995/raet.2017.7795Cepeda-Morales, J. (2017). Response of primary producers to the hydrographic variability in the southern region of the California Current System. Ciencias Marinas, 40(2), 123-135. doi:10.7773/cm.v43i2.2752Delgadillo-Hinojosa, F., Camacho-Ibar, V., Huerta-Díaz, M. A., Torres-Delgado, V., Pérez-Brunius, P., Lares, L., … Castro, R. (2015). Seasonal behavior of dissolved cadmium and Cd/PO4 ratio in Todos Santos Bay: A retention site of upwelled waters in the Baja California peninsula, Mexico. Marine Chemistry, 168, 37-48. doi:10.1016/j.marchem.2014.10.010Durazo, R. (2005). Oceanographic conditions west of the Baja California coast, 2002?2003: A weak El Niño and subarctic water enhancement. Ciencias Marinas, 31(3), 537-552. doi:10.7773/cm.v31i3.43Linacre, L., Durazo, R., Hernández-Ayón, J. M., Delgadillo-Hinojosa, F., Cervantes-Díaz, G., Lara-Lara, J. R., … Bazán-Guzmán, C. (2010). Temporal variability of the physical and chemical water characteristics at a coastal monitoring observatory: Station ENSENADA. Continental Shelf Research, 30(16), 1730-1742. doi:10.1016/j.csr.2010.07.011Espinosa-Carreón, T. L., Gaxiola-Castro, G., Durazo, R., De la Cruz-Orozco, M. E., Norzagaray-Campos, M., & Solana-Arellano, E. (2015). Influence of anomalous subarctic water intrusion on phytoplankton production off Baja California. Continental Shelf Research, 92, 108-121. doi:10.1016/j.csr.2014.10.003Gutierrez-Mejia, E., Lares, M. L., Huerta-Diaz, M. A., & Delgadillo-Hinojosa, F. (2016). Cadmium and phosphate variability during algal blooms of the dinoflagellate Lingulodinium polyedrum in Todos Santos Bay, Baja California, Mexico. Science of The Total Environment, 541, 865-876. doi:10.1016/j.scitotenv.2015.09.081Santamaría-del-Ángel, E., Millán-Núñez, R., González-Silvera, A., Callejas-Jiménez, M., Cajal-Medrano, R., & Galindo-Bect, M. S. (2010). The response of shrimp fisheries to climate variability off Baja California, México. ICES Journal of Marine Science, 68(4), 766-772. doi:10.1093/icesjms/fsq186Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. J., & Barlow, R. G. (2008). An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sensing of Environment, 112(6), 3153-3159. doi:10.1016/j.rse.2008.03.011Aiken, J., Hardman-Mountford, N. J., Barlow, R., Fishwick, J., Hirata, T., & Smyth, T. (2007). Functional links between bioenergetics and bio-optical traits of phytoplankton taxonomic groups: an overarching hypothesis with applications for ocean colour remote sensing. Journal of Plankton Research, 30(2), 165-181. doi:10.1093/plankt/fbm098Stuart, V., Sathyendranath, S., Platt, T., Maass, H., & Irwin, B. D. (1998). Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra. Journal of Plankton Research, 20(2), 187-217. doi:10.1093/plankt/20.2.187Lohrenz, S. E. (2003). Phytoplankton spectral absorption as influenced by community size structure and pigment composition. Journal of Plankton Research, 25(1), 35-61. doi:10.1093/plankt/25.1.35Wu, J., Hong, H., Shang, S., Dai, M., & Lee, Z. (2007). Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn. Biogeosciences Discussions, 4(3), 1555-1584. doi:10.5194/bgd-4-1555-2007Millán-Núñez, E., & Millán-Núñez, R. (2010). Specific absorption coefficient and phytoplankton community structure in the southern region of the California Current during January 2002. Journal of Oceanography, 66(5), 719-730. doi:10.1007/s10872-010-0059-zHaywood, A. J., Steidinger, K. A., Truby, E. W., Bergquist, P. R., Bergquist, P. L., Adamson, J., & Mackenzie, L. (2004). COMPARATIVE MORPHOLOGY AND MOLECULAR PHYLOGENETIC ANALYSIS OF THREE NEW SPECIES OF THE GENUS KARENIA (DINOPHYCEAE) FROM NEW ZEALAND1. Journal of Phycology, 40(1), 165-179. doi:10.1111/j.0022-3646.2004.02-149.xQuijano-Scheggia, S. (2016). The inhibitory effect of a non-yessotoxin-producing dinoflagellate, Lingulodinium polyedrum (Stein) Dodge, towards Vibrio vulnificus and Staphylococcus aureus. Revista de Biología Tropical, 64(2), 805. doi:10.15517/rbt.v64i2.19320Holm-Hansen, O., & Riemann, B. (1978). Chlorophyll a Determination: Improvements in Methodology. Oikos, 30(3), 438. doi:10.2307/3543338Aguilar-Trujillo, A. C., Okolodkov, Y. B., Herrera-Silveira, J. A., Merino-Virgilio, F. del C., & Galicia-García, C. (2017). Taxocoenosis of epibenthic dinoflagellates in the coastal waters of the northern Yucatan Peninsula before and after the harmful algal bloom event in 2011–2012. Marine Pollution Bulletin, 119(1), 396-406. doi:10.1016/j.marpolbul.2017.02.074Ulloa, M. J., Álvarez-Torres, P., Horak-Romo, K. P., & Ortega-Izaguirre, R. (2017). Harmful algal blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine ecosystem. Environmental Development, 22, 120-128. doi:10.1016/j.envdev.2016.10.007Liefer, J. D., Robertson, A., MacIntyre, H. L., Smith, W. L., & Dorsey, C. P. (2013). Characterization of a toxic Pseudo-nitzschia spp. bloom in the Northern Gulf of Mexico associated with domoic acid accumulation in fish. Harmful Algae, 26, 20-32. doi:10.1016/j.hal.2013.03.002Schnetzer, A., Miller, P. E., Schaffner, R. A., Stauffer, B. A., Jones, B. H., Weisberg, S. B., … Caron, D. A. (2007). Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003–2004. Harmful Algae, 6(3), 372-387. doi:10.1016/j.hal.2006.11.004Peña Manjarrez, J. (2009). Environmental factors influencing the variability of Lingulodinium polyedrum and Scrippsiella trochoidea (Dinophyceae) cyst production. Ciencias Marinas, 35(1), 1-14. doi:10.7773/cm.v35i1.1406Ruiz-de la Torre, M. C., Maske, H., Ochoa, J., & Almeda-Jauregui, Cã©. O. (2013). Correction: Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift. PLoS ONE, 8(6). doi:10.1371/annotation/a2f49bbd-e226-4a15-900a-5946cff07d75Kudela, R. M., Bickel, A., Carter, M. L., Howard, M. D. A., & Rosenfeld, L. (2015). The Monitoring of Harmful Algal Blooms through Ocean Observing. Coastal Ocean Observing Systems, 58-75. doi:10.1016/b978-0-12-802022-7.00005-

    Distinct Levels of Sox9 Expression Mark Colon Epithelial Stem Cells that Form Colonoids in Culture

    Get PDF
    Sox9 is an high-mobility group box transcription factor that is expressed in the stem cell zone of the small intestine and colon. We have previously used a Sox9EGFP mouse model to demonstrate that discrete levels of Sox9 expression mark small intestine epithelial stem cells that form crypt/villus-like structures in a three-dimensional culture system (Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Am J Physiol Gastrointest Liver Physiol 296: G1108–G1118, 2009; Gracz AD, Ramalingam S, Magness ST. Am J Physiol Gastrointest Liver Physiol 298: G590–G600, 2010). In the present study, we hypothesized that discrete levels of Sox9 expression would also mark colonic epithelial stem cells (CESCs). Using the Sox9EGFP mouse model, we show that lower levels of Sox9 mark cells in the transit-amplifying progenitor cell zone, while higher levels of Sox9 mark cells in the colonic crypt base. Furthermore, we demonstrate that variable SOX9 levels persist in cells of colonic adenomas from mice and humans. Cells expressing lower Sox9 levels demonstrate gene expression profiles consistent with more differentiated populations, and cells expressing higher Sox9 levels are consistent with less differentiated populations. When placed in culture, cells expressing the highest levels of Sox9 formed “colonoids,” which are defined as bodies of cultured colonic epithelial cells that possess multiple cryptlike structures and a pseudolumen. Cells expressing the highest levels of Sox9 also demonstrate multipotency and self-renewal in vitro, indicating functional stemness. These data suggest a dose-dependent role for Sox9 in normal CESCs and cells comprising colon tumors. Furthermore, distinct Sox9 levels represent a new biomarker to study CESC and progenitor biology in physiological and disease states

    High Quality, Low Cost Egg Incubator for BIC Church in Choma, Zambia

    Get PDF
    The Egg Incubator team is partnering with the Brethren in Christ Church located in Choma, Zambia to design a high-quality, low-cost chicken egg incubator to supply the pastors and church members with a means of food and income. The design will need to take into account the accessibility and cost of the tools and materials. The current prototype features separate heating and humidity systems, a control system to maintain a set temperature and humidity, and tilting egg racks. The heating system consists of two stovetop coils to produce heat and a fan to transfer it to the air. The humidifier utilizes an atomizer in a pan of water to create a mist that mixes with the hot air to create humidity. The control system uses a proportional integral derivative controller (PID) to keep the temperature at 37 ± 1 °C and the humidity at 60–70%. The egg racks are tilted by a motor that runs every 6 hours to prevent the embryos from sticking to the shell. With a fully functioning prototype, the team has begun to incubate 60 real fertilized eggs. During the 21-day incubation process, a final prototype iteration is being designed and will be built on-site in Zambia in May 2022. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1004/thumbnail.jp

    Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation

    Get PDF
    Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling–induced proliferation, particularly during regeneration and adenoma formation
    corecore